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A little history...  programs
• Stored program model has been around for a long time...
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Program memory

Data Memory

Program 
counter
(index)

Processing Logic
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op (6) rs (5) rt (5) rd (5) shamt (5)

31        26 25        21 20      16 15      11 10             6  5              0

funct (6)

 R-type: All operands are in registers

Assembly: add   $9,  $7,  $8   # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

           
             (add: op+func)

Machine:

B:  000000  00111   01000  01001     xxxxx      100000
D:       0          7           8          9             x             32        

3R-Type:  Assembly and Machine Format
Compiler translates HLL to instructions which reduce to 1s, 0s
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 All instructions have 3 operands
 All operands must be registers
 Operand order is fixed (destination first)
 Example:

 C code:   A = B - C;
     (Assume that A, B, C are stored in registers s0, s1, s2.)

 MIPS code:   sub $s0, $s1, $s2 
  Machine code: 000000 10001 10010 10000 xxxxx 100010

 Other R-type instructions
 addu, mult, and, or, sll, srl, …

4

R-type Instructions
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•  I-type: One operand is an immediate value and others 
               are in registers

  Example:   lw   $s3, 32($t0)     # RF[19] = DM[RF[8]+32]

Op (6) rs (5) rt (5) Address/Immediate value (16)

31        26 25        21 20      16 15                                                0

I-Type Instructions: Another Example

B: 100011   01000    10011         0000000000100000
D:      35           8          19                        32

How about load the next word in memory?

5
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MIPS Datapath
6

Instructions in memory 
implement algorithm

... plus 6 bit function codes = more functionality

6 bit opcodes...

More ways to 
address memory

Longer 
instructions = 
more bits to 

address 
registers
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An important idea...
712

• We can see CPU performance dependent on:
– Clock rate, CPI, and instruction count

• CPU time is directly proportional to all 3:
– Therefore an x % improvement in any one variable leads 

to an x % improvement in CPU performance
• But, everything usually affects everything:

Hardware
Tech. Organization ISAs

Compiler
Technology

Clock Cycle
Time

CPI

Instruction
Count

A common 
denominator

For new switches, time is the best benchmark;
We can calculate speed, power for general purpose approach

If new switch better, get win
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Pipelining Lessons (laundry example)
• Multiple tasks operating 

simultaneously
• Pipelining doesnʼt help 

latency of single task, it 
helps throughput of 
entire workload

• Pipeline rate limited by 
slowest pipeline stage

• Potential speedup = 
Number pipe stages

• Unbalanced lengths of 
pipe stages reduces 
speedup

• Also, need time to “fill” 
and “drain” the pipeline.
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Pipelineing can cost overhead.  But what if free?  
What if really deep?
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Example:  Nanomagnetics
Schematic

Device

Wire

Gate

Inverter

Experimental

i1

i3

i2

Inverted 
output

0 1

i o

i o

0

1

R. Cowburn, M. Welland, “Room temperature magnetic 
quantum cellular automata,” Science 287, 1466, 2000

A. Imre, “Experimental Study of Nanomagnets for 
Magnetic QCA Logic Applications,” U. of Notre Dame, 
Ph.D. Dissertation.

M
A

C1
0

 

1
0
0
0

1
1
1
1

1
1
0
0

0
1
1
1

0
0
0
0

0
0
1
1

1
0
0
1

0
1
1
0

B MM
A

C1
0

 

1
0
0
0

1
1
1
1

1
1
0
0

0
1
1
1

0
0
0
0

0
0
1
1

1
0
0
1

0
1
1
0

  

1
0
0
0

1
1
1
1

1
1
1
1

1
1
0
0

1
1
0
0

0
1
1
1

0
1
1
1

0
0
0
0

0
0
0
0

0
0
1
1

0
0
1
1

1
0
0
1

1
0
0
1

0
1
1
0

0
1
1
0

B

 

A. Imre, et. al. 
“Magnetic Logic 
Devices Based 
on Field-Coupled 
Nanomagnets,” 
NanoGiga 2007.

A. Imre, et. al., “Majority logic gate for 
Magnetic Quantum-Dot Cellular Automata,” 
Science, vol. 311, No. 5758, pp. 205–208, 
January13, 2006.

A. Imre, et. al., “Majority logic gate for Magnetic Quantum-
Dot Cellular Automata,” Science, vol. 311, No. 5758, pp. 
205–208, January13, 2006.
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Example:  Nanomagnetics
10

1 wire controls 1000s of magnets
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The “new look” dataflow

PC

Inst.
Memory

4
ADD

Register
File

Sign
Extend

16 32

M
u
x

M
u
x

Comp.

ALU

Branch
taken

M
u
x

Data
Mem.

IR6...10

IR11..15

MEM/
WB.IR

M
u
x

IF/ID ID/EX EX/MEM MEM/WB

Data must be 
stored from one 
stage to the next
in pipeline 
registers/latches.
hold temporary
values between
clocks and needed
info. for 
execution.



University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 12

Single-cycle diagrams:  cycle 4
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Data hazard specifics
• There are actually 3 different kinds of data hazards!

– Read After Write (RAW)
– Write After Write (WAW)
– Write After Read (WAR)

• Weʼll discuss/illustrate each on forthcoming slides.  
However, 1st a note on convention.
– Discussion of hazards will use generic instructions i & j.
– i is always issued before j.  
– Thus, i will always be further along in pipeline than j.

• With an in-order issue/in-order completion machine, 
weʼre not as concerned with WAW, WAR
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Read after write (RAW) hazards
• With RAW hazard, instruction j tries to read a source 

operand before instruction i writes it.
• Thus, j would incorrectly receive an old or incorrect 

value
• Graphically/Example:

• Can use stalling or forwarding to resolve this hazard

… j i …

Instruction j is a
read instruction
issued after i

Instruction i is a
write instruction
issued before j

i:  ADD R1, R2, R3
j:  SUB R4, R1, R6
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Branch/Control Hazards
• So far, weʼve limited discussion of hazards to:

– Arithmetic/logic operations
– Data transfers

• Also need to consider hazards involving branches:
– Example:

• 40: beq $1, $3, $28              # ($28 gives address 72)
• 44: and $12, $2, $5
• 48: or $13, $6, $2
• 52: add $14, $2, $2
• 72: lw $4, 50($7)

• How long will it take before the branch decision takes 
effect?
– What happens in the meantime?
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Pipelining and ILP
• Pipelining provides for some instruction level 

parallelism
– (multiple instructions executing at the same time)

• Hazards hurt ILP
– (sometimes we have to stall the pipeline and wait b/c of 

instruction/data dependencies)
• Dynamic scheduling (next topic) might help...

16
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ECE 252 / CPS 220 Lecture Notes

Dynamic Scheduling I
3© 2007 by Sorin, Roth, Hill, Wood, 

Sohi, Smith, Vijaykumar, Lipasti

Dynamic Scheduling: Motivation

• cycle4: addf stalls due to RAW hazard
• OK, fundamental problem

• also cycle4: mulf stalls due to pipeline hazard (addf stalls)
• why? mulf can’t proceed into ID because addf is there

• but that’s the only reason ! not good enough!

• why can’t we decode mulf in cycle 4 and execute it in c5?
• no fundamental reason why we can’t do this!

1 2 3 4 5 6 7 8 9 10

divf f0,f2,f4 F D E/ E/ E/ E/ W

addf f6,f0,f2 F D d* d* d* E+ E+ W

mulf f8,f2,f4 F p* p* p* D E* E* W
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ECE 252 / CPS 220 Lecture Notes

Dynamic Scheduling I
5© 2007 by Sorin, Roth, Hill, Wood, 

Sohi, Smith, Vijaykumar, Lipasti

Scheduling

scheduling: re-arranging instructions to maximize performance

• requires knowledge about structure of processor

• requires knowledge about latencies and dependences

two options for who should schedule instructions

• static scheduling: by compiler

• dynamic scheduling: by hardware
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Scheduling
• Finds instructions to execute in each cycle

– Static (in-order) scheduling:
looks only at the next instruction

– Dynamic (out-of-order) scheduling:
looks at a “window” of instructions

• How many instructions are we looking for?
– 3-4  is typical today, 8 is in the works
– A CPU that can ideally do N instrs per cycle

is called “N-way superscalar”, “N-issue superscalar”, or 
simply “N-way” or “N-issue”.
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Static Scheduling
• Cycle 1

– Start I1.
– Can we also start I2? No.

• Cycle 2
– Start I2.
– Can we also start I3? Yes.
– Can we also start I4? No.

• If the next instruction can not start,
stops looking for things to do in this cycle!

I1: ADD R1, R2, R3

I2: SUB R4, R1, R5

I3: AND R6, R1, R7

I4: OR R8, R2, R6

I5: XOR R10, R2, R11

Program code
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Dynamic Scheduling
• Cycle 1

– Operands ready? I1, I5.
– Start I1, I5.

• Cycle 2
– Operands ready? I2, I3. 
– Start I2,I3.

• Window size (W):
how many instructions ahead do we look.
– Do not confuse with “issue width” (N).
– E.g. a 4-issue out-of-order processor can have a 128-

entry window (it can look at the next 128 instructions).

I1: ADD R1, R2, R3

I2: SUB R4, R1, R5

I3: AND R6, R1, R7

I4: OR R8, R2, R6

I5: XOR R10, R2, R11

Program code
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Register Renaming
• Solution: give I3 some other

some other name (e.g. S)
for the value it produces.

• But I4 uses that value,
so we must also change that to S…

• In fact, all uses of R5 from I3 to the next instruction that 
writes to R5 again must now be changed to S!

• We get rid of output dependences in the same way: 
change R2 in I5 (and subsequent instrs) to T.

I1: ADD R1, R2, R3

I2: SUB R2, R1, R5

I3: AND R5, R11, R7

I4: OR R8, R6, R2

I5: XOR R2, R4, R11

Program code
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Overhead of dynamic scheduling
• Need excess state that keeps track of renames, etc.

23
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Overhead of dynamic scheduling
• Need excess state that keeps track of renames, etc.
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Question?
• How much of a chip is “memory”?

– 10%
– 25%
– 50%
– 75%
– 85%

29

State also comes in
form of memory
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If I say “Memory” what do you think of?
• Memory Comes in Many Flavors

– SRAM (Static Random Access Memory)
– DRAM (Dynamic Random Access Memory)
– ROM, Flash, etc.
– Disks, Tapes, etc.

• Difference in speed, price and “size”
– Fast is small and/or expensive
– Large is slow and/or expensive

– The search is on for a “universal memory”
– Whatʼs a “universal memory”

• Fast and non-volatile.
– May be MRAM, PCRAM, etc. etc.

Letʼs start with 
DRAM.

Its generally the 
largest piece of 

RAM.
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Is there a problem with DRAM?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10yrs)1
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“Mooreʼs Law”

Processor-DRAM Memory Gap (latency)

Why is 
this a 

problem?
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The Full Memory Hierarchy
“always reuse a good idea”

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms 
(10,000,000 ns)

10   - 10  cents/bit
-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10

-8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
4K-16K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Our current
focus



University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 33

Where can a block be placed in a cache?
• 3 schemes for block placement in a cache:

– Direct mapped cache:
• Block (or data to be stored) can go to only 1 place in cache
• Usually:  (Block address) MOD (# of blocks in the cache)

– Fully associative cache:
• Block can be placed anywhere in cache

– Set associative cache:
• “Set” = a group of blocks in the cache
• Block mapped onto a set & then block can be placed 

anywhere within that set
• Usually:  (Block address) MOD (# of sets in the cache)
• If n blocks, we call it n-way set associative
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Where can a block be placed in a cache?

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Fully Associative Direct Mapped Set Associative

Set 0Set 1Set 2Set 3

Block 12 can go
anywhere

Block 12 can go
only into Block 4

(12 mod 8)

Block 12 can go
anywhere in set 0

(12 mod 4)
1 2 3 4 5 6 7 8 9….. 

Cache:

Memory: 12
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Memory access equations
• Using what we defined on previous slide, we can say:

– Memory stall clock cycles = 
• Reads x Read miss rate x Read miss penalty + 
 Writes x Write miss rate x Write miss penalty

• Often, reads and writes are combined/averaged:
– Memory stall cycles = 

• Memory access x Miss rate x Miss penalty (approximation)

• Also possible to factor in instruction count to get a 
“complete” formula:
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Reducing cache misses
• Obviously, we want data accesses to result in cache 

hits, not misses –this will optimize performance

• Start by looking at ways to increase % of hits….

• …but first look at 3 kinds of misses!
– Compulsory misses:

• Very 1st access to cache block will not be a hit –the dataʼs not 
there yet!

– Capacity misses:
• Cache is only so big.  Wonʼt be able to store every block 

accessed in a program – must swap out!
– Conflict misses:

• Result from set-associative or direct mapped caches
• Blocks discarded/retrieved if too many map to a location

More devices = more 
cache to help reduce


