
University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 1

Review of Von Neumann Architectures

University of Notre Dame

CSE 30321 - Lecture 01 - Introduction to CSE 30321

A little history... programs
• Stored program model has been around for a long time...

2

Program memory

Data Memory

Program
counter
(index)

Processing Logic

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

op (6) rs (5) rt (5) rd (5) shamt (5)

31 26 25 21 20 16 15 11 10 6 5 0

funct (6)

 R-type: All operands are in registers

Assembly: add $9, $7, $8 # add rd, rs, rt: RF[rd] = RF[rs]+RF[rt]

 (add: op+func)

Machine:

B: 000000 00111 01000 01001 xxxxx 100000
D: 0 7 8 9 x 32

3R-Type: Assembly and Machine Format
Compiler translates HLL to instructions which reduce to 1s, 0s

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

 All instructions have 3 operands
 All operands must be registers
 Operand order is fixed (destination first)
 Example:

 C code: A = B - C;
 (Assume that A, B, C are stored in registers s0, s1, s2.)

 MIPS code: sub $s0, $s1, $s2
 Machine code: 000000 10001 10010 10000 xxxxx 100010

 Other R-type instructions
 addu, mult, and, or, sll, srl, …

4

R-type Instructions

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

• I-type: One operand is an immediate value and others
 are in registers

 Example: lw $s3, 32($t0)     # RF[19] = DM[RF[8]+32]

Op (6) rs (5) rt (5) Address/Immediate value (16)

31 26 25 21 20 16 15 0

I-Type Instructions: Another Example

B: 100011 01000 10011 0000000000100000
D: 35 8 19 32

How about load the next word in memory?

5

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

MIPS Datapath
6

Instructions in memory
implement algorithm

... plus 6 bit function codes = more functionality

6 bit opcodes...

More ways to
address memory

Longer
instructions =
more bits to

address
registers

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

An important idea...
712

• We can see CPU performance dependent on:
– Clock rate, CPI, and instruction count

• CPU time is directly proportional to all 3:
– Therefore an x % improvement in any one variable leads

to an x % improvement in CPU performance
• But, everything usually affects everything:

Hardware
Tech. Organization ISAs

Compiler
Technology

Clock Cycle
Time

CPI

Instruction
Count

A common
denominator

For new switches, time is the best benchmark;
We can calculate speed, power for general purpose approach

If new switch better, get win

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

Pipelining Lessons (laundry example)
• Multiple tasks operating

simultaneously
• Pipelining doesnʼt help

latency of single task, it
helps throughput of
entire workload

• Pipeline rate limited by
slowest pipeline stage

• Potential speedup =
Number pipe stages

• Unbalanced lengths of
pipe stages reduces
speedup

• Also, need time to “fill”
and “drain” the pipeline.

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelineing can cost overhead. But what if free?
What if really deep?

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 9

Example: Nanomagnetics
Schematic

Device

Wire

Gate

Inverter

Experimental

i1

i3

i2

Inverted
output

0 1

i o

i o

0

1

R. Cowburn, M. Welland, “Room temperature magnetic
quantum cellular automata,” Science 287, 1466, 2000

A. Imre, “Experimental Study of Nanomagnets for
Magnetic QCA Logic Applications,” U. of Notre Dame,
Ph.D. Dissertation.

M
A

C1
0

1
0
0
0

1
1
1
1

1
1
0
0

0
1
1
1

0
0
0
0

0
0
1
1

1
0
0
1

0
1
1
0

B MM
A

C1
0

1
0
0
0

1
1
1
1

1
1
0
0

0
1
1
1

0
0
0
0

0
0
1
1

1
0
0
1

0
1
1
0

1
0
0
0

1
1
1
1

1
1
1
1

1
1
0
0

1
1
0
0

0
1
1
1

0
1
1
1

0
0
0
0

0
0
0
0

0
0
1
1

0
0
1
1

1
0
0
1

1
0
0
1

0
1
1
0

0
1
1
0

B

A. Imre, et. al.
“Magnetic Logic
Devices Based
on Field-Coupled
Nanomagnets,”
NanoGiga 2007.

A. Imre, et. al., “Majority logic gate for
Magnetic Quantum-Dot Cellular Automata,”
Science, vol. 311, No. 5758, pp. 205–208,
January13, 2006.

A. Imre, et. al., “Majority logic gate for Magnetic Quantum-
Dot Cellular Automata,” Science, vol. 311, No. 5758, pp.
205–208, January13, 2006.

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

Example: Nanomagnetics
10

1 wire controls 1000s of magnets

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 11

The “new look” dataflow

PC

Inst.
Memory

4
ADD

Register
File

Sign
Extend

16 32

M
u
x

M
u
x

Comp.

ALU

Branch
taken

M
u
x

Data
Mem.

IR6...10

IR11..15

MEM/
WB.IR

M
u
x

IF/ID ID/EX EX/MEM MEM/WB

Data must be
stored from one
stage to the next
in pipeline
registers/latches.
hold temporary
values between
clocks and needed
info. for
execution.

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 12

Single-cycle diagrams: cycle 4

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 13

Data hazard specifics
• There are actually 3 different kinds of data hazards!

– Read After Write (RAW)
– Write After Write (WAW)
– Write After Read (WAR)

• Weʼll discuss/illustrate each on forthcoming slides.
However, 1st a note on convention.
– Discussion of hazards will use generic instructions i & j.
– i is always issued before j.
– Thus, i will always be further along in pipeline than j.

• With an in-order issue/in-order completion machine,
weʼre not as concerned with WAW, WAR

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 14

Read after write (RAW) hazards
• With RAW hazard, instruction j tries to read a source

operand before instruction i writes it.
• Thus, j would incorrectly receive an old or incorrect

value
• Graphically/Example:

• Can use stalling or forwarding to resolve this hazard

… j i …

Instruction j is a
read instruction
issued after i

Instruction i is a
write instruction
issued before j

i: ADD R1, R2, R3
j: SUB R4, R1, R6

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 15

Branch/Control Hazards
• So far, weʼve limited discussion of hazards to:

– Arithmetic/logic operations
– Data transfers

• Also need to consider hazards involving branches:
– Example:

• 40: beq $1, $3, $28 # ($28 gives address 72)
• 44: and $12, $2, $5
• 48: or $13, $6, $2
• 52: add $14, $2, $2
• 72: lw $4, 50($7)

• How long will it take before the branch decision takes
effect?
– What happens in the meantime?

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

Pipelining and ILP
• Pipelining provides for some instruction level

parallelism
– (multiple instructions executing at the same time)

• Hazards hurt ILP
– (sometimes we have to stall the pipeline and wait b/c of

instruction/data dependencies)
• Dynamic scheduling (next topic) might help...

16

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 17

ECE 252 / CPS 220 Lecture Notes

Dynamic Scheduling I
3© 2007 by Sorin, Roth, Hill, Wood,

Sohi, Smith, Vijaykumar, Lipasti

Dynamic Scheduling: Motivation

• cycle4: addf stalls due to RAW hazard
• OK, fundamental problem

• also cycle4: mulf stalls due to pipeline hazard (addf stalls)
• why? mulf can’t proceed into ID because addf is there

• but that’s the only reason ! not good enough!

• why can’t we decode mulf in cycle 4 and execute it in c5?
• no fundamental reason why we can’t do this!

1 2 3 4 5 6 7 8 9 10

divf f0,f2,f4 F D E/ E/ E/ E/ W

addf f6,f0,f2 F D d* d* d* E+ E+ W

mulf f8,f2,f4 F p* p* p* D E* E* W

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 18

ECE 252 / CPS 220 Lecture Notes

Dynamic Scheduling I
5© 2007 by Sorin, Roth, Hill, Wood,

Sohi, Smith, Vijaykumar, Lipasti

Scheduling

scheduling: re-arranging instructions to maximize performance

• requires knowledge about structure of processor

• requires knowledge about latencies and dependences

two options for who should schedule instructions

• static scheduling: by compiler

• dynamic scheduling: by hardware

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 19

Scheduling
• Finds instructions to execute in each cycle

– Static (in-order) scheduling:
looks only at the next instruction

– Dynamic (out-of-order) scheduling:
looks at a “window” of instructions

• How many instructions are we looking for?
– 3-4 is typical today, 8 is in the works
– A CPU that can ideally do N instrs per cycle

is called “N-way superscalar”, “N-issue superscalar”, or
simply “N-way” or “N-issue”.

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 20

Static Scheduling
• Cycle 1

– Start I1.
– Can we also start I2? No.

• Cycle 2
– Start I2.
– Can we also start I3? Yes.
– Can we also start I4? No.

• If the next instruction can not start,
stops looking for things to do in this cycle!

I1: ADD R1, R2, R3

I2: SUB R4, R1, R5

I3: AND R6, R1, R7

I4: OR R8, R2, R6

I5: XOR R10, R2, R11

Program code

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 21

Dynamic Scheduling
• Cycle 1

– Operands ready? I1, I5.
– Start I1, I5.

• Cycle 2
– Operands ready? I2, I3.
– Start I2,I3.

• Window size (W):
how many instructions ahead do we look.
– Do not confuse with “issue width” (N).
– E.g. a 4-issue out-of-order processor can have a 128-

entry window (it can look at the next 128 instructions).

I1: ADD R1, R2, R3

I2: SUB R4, R1, R5

I3: AND R6, R1, R7

I4: OR R8, R2, R6

I5: XOR R10, R2, R11

Program code

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 22

Register Renaming
• Solution: give I3 some other

some other name (e.g. S)
for the value it produces.

• But I4 uses that value,
so we must also change that to S…

• In fact, all uses of R5 from I3 to the next instruction that
writes to R5 again must now be changed to S!

• We get rid of output dependences in the same way:
change R2 in I5 (and subsequent instrs) to T.

I1: ADD R1, R2, R3

I2: SUB R2, R1, R5

I3: AND R5, R11, R7

I4: OR R8, R6, R2

I5: XOR R2, R4, R11

Program code

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

Overhead of dynamic scheduling
• Need excess state that keeps track of renames, etc.

23

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1970 1980 1990 2000

Es
tim

at
ed

 S
ta

te
 (k

 b
its

)

Total State Machine Supervisor
User Transient Latency Enhancing
Access Enhancing

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 24

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 25

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 26

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 27

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

Overhead of dynamic scheduling
• Need excess state that keeps track of renames, etc.

28

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1970 1980 1990 2000

Es
tim

at
ed

 S
ta

te
 (k

 b
its

)

Total State Machine Supervisor
User Transient Latency Enhancing
Access Enhancing

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures

Question?
• How much of a chip is “memory”?

– 10%
– 25%
– 50%
– 75%
– 85%

29

State also comes in
form of memory

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 30

If I say “Memory” what do you think of?
• Memory Comes in Many Flavors

– SRAM (Static Random Access Memory)
– DRAM (Dynamic Random Access Memory)
– ROM, Flash, etc.
– Disks, Tapes, etc.

• Difference in speed, price and “size”
– Fast is small and/or expensive
– Large is slow and/or expensive

– The search is on for a “universal memory”
– Whatʼs a “universal memory”

• Fast and non-volatile.
– May be MRAM, PCRAM, etc. etc.

Letʼs start with
DRAM.

Its generally the
largest piece of

RAM.

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 31

Is there a problem with DRAM?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10yrs)1

10

10
0

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
grows 50% / year

Pe
rfo

rm
an

ce

Time

“Mooreʼs Law”

Processor-DRAM Memory Gap (latency)

Why is
this a

problem?

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 32

The Full Memory Hierarchy
“always reuse a good idea”

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit
-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10

-8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
4K-16K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Our current
focus

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 33

Where can a block be placed in a cache?
• 3 schemes for block placement in a cache:

– Direct mapped cache:
• Block (or data to be stored) can go to only 1 place in cache
• Usually: (Block address) MOD (# of blocks in the cache)

– Fully associative cache:
• Block can be placed anywhere in cache

– Set associative cache:
• “Set” = a group of blocks in the cache
• Block mapped onto a set & then block can be placed

anywhere within that set
• Usually: (Block address) MOD (# of sets in the cache)
• If n blocks, we call it n-way set associative

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 34

Where can a block be placed in a cache?

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Fully Associative Direct Mapped Set Associative

Set 0Set 1Set 2Set 3

Block 12 can go
anywhere

Block 12 can go
only into Block 4

(12 mod 8)

Block 12 can go
anywhere in set 0

(12 mod 4)
1 2 3 4 5 6 7 8 9…..

Cache:

Memory: 12

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 35

Memory access equations
• Using what we defined on previous slide, we can say:

– Memory stall clock cycles =
• Reads x Read miss rate x Read miss penalty +
 Writes x Write miss rate x Write miss penalty

• Often, reads and writes are combined/averaged:
– Memory stall cycles =

• Memory access x Miss rate x Miss penalty (approximation)

• Also possible to factor in instruction count to get a
“complete” formula:

University of Notre Dame

Lecture 07 - Review of Von Neumann Architectures 36

Reducing cache misses
• Obviously, we want data accesses to result in cache

hits, not misses –this will optimize performance

• Start by looking at ways to increase % of hits….

• …but first look at 3 kinds of misses!
– Compulsory misses:

• Very 1st access to cache block will not be a hit –the dataʼs not
there yet!

– Capacity misses:
• Cache is only so big. Wonʼt be able to store every block

accessed in a program – must swap out!
– Conflict misses:

• Result from set-associative or direct mapped caches
• Blocks discarded/retrieved if too many map to a location

More devices = more
cache to help reduce

